The Ten Commandments of RTL Coding

Eric Ryherd

=

= "WC?YPH’}%SS

l‘

Cypress Semiconductor

15 Trafalgar Square
Nashua, NH USA

er@cypress.com

ABSTRACT

Most RTL is destined to be permanently cast into costly and unforgiving Silicon. Coding RTL is
therefore very different than writing software which can be updated in the field on the next
release. This paper presents the real world, high-level concepts on how to code RTL that is
reusable, maintainable and relatively bug-free so that silicon is functional on the first pass. The
following "Commandments" are general rules to live by when coding RTL. Inexperienced logic
designers should strictly adhere to the rules presented in this paper. Experienced RTL coders

should review these rules and contact the author with updates

Table of Contents

1.0 Yoo (1T £ o] o SO RPPR 3
2.0 The COMMANUMENTSccueiiieie ettt et e seesteesteeseesbeebeaneesreeneeenee e 3
2.1 Keep it SIMPIE (KISS) ... 3
2.2 Follow the Reuse and Methodology Manual GUIdelines...........ccccvvveevinieiienisie e 4
2.3 Comment the INtent 0f the COAE.........ccveiieiiiiee e 5
2.4 Code With Hardware i IMINGcooiieiioiiieeee e 6
2.5 Cross Clock Boundaries Carefully.........cccoiiioiiiiiie e 7
2.6 USe HIErarchy WISEIYcc.oiiiiiiieee s 8
2.7 Parameterize Where it MaKes SENSE........coouiiieiieieiieiierie ettt 9
2.8 Warnings are NOT OK ..ottt sttt nnas 10
2.9 Always Synthesize and Review Gate Level Implementationcccccoeveieicieninnnnns 10
2.10 If the Code Has Not Been Tested, It D0OeS NOt WOrKccvvveiiiiiiiiiiiiiie e 13
3.0 Conclusions and RECOMMENUALIONSc.oiviiiiiiiiiieieie e 14
4.0 ACKNOWIEAGEMENTS ...t 14
ST O o (c =] 1= 0 0SSR 14
Table of Figures
Figure 1 Metastability EXAMPIE.........ooiiiiiiiicee e 7
Figure 2 Design Vision High Level SChematiC.............coovviiiiiiiiiiieeee e 11
Figure 3 Design Vision Low Level SChematiC ... 12
Figure 4 Final Schematic With COrrected RTLcocoiiiiiiiiiiecese e 13

SNUG Boston 2008 2 The Ten Commandments of RTL Coding

1.0 Introduction

Writing Verilog or VHDL (RTL) code seems very similar to writing C software. In fact, Verilog
was modeled closely after C to make it more familiar. However, RTL code has one big difference
compared to C, RTL code is usually destined to be cast into permanent and unforgiving silicon®.
Silicon cannot be “upgraded” in the field like Software can. The RTL code must be perfect the
first time around or delays in the launch of a new product will result.

Moore’s law is continuing without pause and transistor count continues to double every 2 years.
In order to fill these acres of silicon with meaningful and bug-free transistors, RTL code must be
written to be highly reusable, easily maintainable, well documented and easy to implement. The
Commandments listed in this paper provide ten high-level rules to live by that will increase the
odds of high quality RTL code.

2.0 The Commandments

The “Commandments” below can always be bent depending on the situation. However, each
time a commandment is not followed increases the risk that the design will have a bug or is so
difficult to reuse that it is actually easier to recode it than try to fix it. A great deal of effort will
be expended in coding, debugging, synthesizing, creating constraints and documenting RTL
code. Ideally your hard work will be rewarded with years of reuse of the
same RTL. Only a little additional effort early in the design phase is required
to insure the commandments are followed.

2.1 Keep it Simple (KISS)

"Everything should be made as simple as possible, but not simpler" - Albert
Einstein

The simplest solution is almost always the best. Simple designs are easier to

understand, test and support over time. They are also more likely to be reused. Never add a
"feature™ because it's "easy". Every feature has to be tested, verified, simulated, scan tested, fault
graded, tested on a tester when silicon is built, supported in future revisions, made backwards
compatible in future revisions and so on and on - forever. Every feature must be PROVEN to
have value to the customer, not just that it is easy to implement.

L FPGAs are “soft” silicon which allow hardware to be updated in the field. However, FPGAs are cost and/or power
prohibitive for many applications. While the commandments can be loosened for RTL destined for FPGAs, the
commandments should still be followed. The RTL code may be cast into silicon when it is reused on the next
generation product, but only if it has followed these commandments.

SNUG Boston 2008 3 The Ten Commandments of RTL Coding

Spend a few minutes, or even a few
P The case of the unwanted UART status bits:

daYS thln_klng about how you are One of my best engineers was assigned the task of designing a 16-
going to implement the RTL to bit UART. The UART had a simple spec with a FIFO and few
match the requirements. Don't jump registers including a 16-bit status register. The status register only
in and immediately start coding in a ha.d Sor 6.bits defir_led in it, the other bits were reserved. The
way that exactly matches the prlght engineer decided to put all sorts of cool_ status

e L. information in all of the reserved bits. Sounds like a great idea,
specification. Is there a way to but wait, the verification team didn’t have any tests for any of

perform the same function in a these bits, the documentation didn’t match the implementation and
simpler way? Can functions be customer service was getting a lot of calls on what all these other
combined to reuse the same bits do and why they weren’t all zero. Since all of the bits were

: : now full, there was no possibility of adding a bit when a customer
hard\{vgre mulU_p le t!meS?. Can error asked for a feature to be added. While the reserved bits were
conditions be simplified into a broad “cool”, no one wanted them. They wasted gates, made it hard for
category so they can all be processed | customer service, and made work for everyone and left no room
in the same way? If a slight for future expansion. He should have suggested one or 2 of his
simplification of the specification ideas when he first read the spec. Every one on the team could
will significantly simplify the have weighed in on the value of each bit and we probably would

)] have kept a couple. Instead, his hard work was removed.
design, push back on the spec writers P P

to see if they will accept the simplification and be sure to explain the ramifications of the more
complex design. Don't hesitate to recode your RTL from scratch if you find that the solution is
getting too complex. It'll only get worse over time and you'll never have time to recode it later.

2.2 Follow the Reuse and Methodology Manual Guidelines

Bricaud ISBN:1-4020-7141-8) is THE guide on how to write RTL. The \Wianuat

RMM is a "Best Practices™ that has been put together by dozens of RTL
veterans. All RTL engineers should at least read Chapter 5 - RTL Coding
Guidelines. The RMM is the basis for most of the rules in Verilog Lint
checkers. we svaviman o coffousion

THirp EoifioN

The Reuse Methodology Manual (RMM) (Michael Keating & Pierre (' Reuse

A few key points from the RMM:

« Document a naming convention for modules and signals and
STICK to it

« Indent code with spaces (not tabs)

o Port lists should be alphabetical

« Maintain signal names across hierarchy
« Signal names should be meaningful

« Always use active high logic (active low logic just confuses everyone - the one exception
is reset_n)

o Busses should always be N:0 (never 0:N)

SNUG Boston 2008 4 The Ten Commandments of RTL Coding

e Setup a timing budget early in the design process
o Register outputs

« Design fully synchronous circuits - they are easier to synthesize, analyze timing, place &
route and test

o Use a language sensitive editor that understands Verilog

= vim (or gvim) knows verilog syntax based on the .v extension and will highlight the
syntax automatically.

= emacs has many Verilog modes and can even automatically thread the hierarchy, fill in
sensitivity lists, build generic syntax structures (like SWITCH/CASE or even State
Machines) and much more.

All of these guidelines will make your job easier in the long run. With a consistent naming
convention across every RTL file in a project (ideally across the entire company), anyone can
reuse and maintain the code that you have worked so hard on. If your code does not follow the
conventions, then later on you may even decide it's easier to rewrite the code from scratch than
trying to figure out what the code is trying to do. Rewriting code wastes every ones time. It
doesn't take any extra effort to follow these guidelines.

2.3 Comment the Intent of the Code

Anyone reading your RTL can be assumed to know the syntax of the language so simply stating
WHAT operation is taking place isn't doing anyone any favors. Commenting WHY the operation
is being performed and what the assumptions, inputs, outputs and side effects is they key. These
comments will help you understand your own code in six months when you have to debug a
problem. It will also help anyone trying to reuse or maintain your code in the future.

Bad Comments:
mulin <= left + right; // Add Left and Right

if (datrdy & ~st32ubw) begin // if datrdy and not st32ubw

Good Comments:

mulin <= left + right; // add the sources of the alu in preparation for
multiplication

if (datrdy & ~st32ubw) begin // if the ALU has data ready and not in a
stall condition
Always include a short description at the top of the file of what this code does at a high level.
Typically this only needs to be two or three sentences that in very general terms describe what is
being accomplished by the RTL in this file. Don't get too detailed or else the comments may no
longer match the actual function of the RTL as things change. A few general sentences will
always remain up-to-date and the details are in the code itself. Be sure to include your name in

SNUG Boston 2008 5 The Ten Commandments of RTL Coding

the comment header- hey you worked hard on this RTL - take credit for that hard work and sign
your name to it!

All RTL files should contain your company’s copyright notice. This is for legal reasons - removal
of the copyright notice by someone who has stolen IP signifies that the person knew the code was
copyrighted and deliberately stole it. If the notice isn't there in the first place, someone might
copy it and claim that they didn't know it was proprietary. This can be the difference between a
multi-million dollar legal settlement versus a slap on the wrist.

2.4 Code with Hardware in Mind

There is a very big difference between writing software and coding RTL. Coding RTL might
look and feel like you are writing software, but remember that all of this code will have to
eventually be synthesized into silicon. The closer your code is to the actual silicon
implementation, the more predictable your results (timing, area, power) will be. There are plenty
of fancy features in Verilog and VHDL that are perfectly fine to use in a testbench or behavioral
code, but should NEVER be used in synthesizable logic. The basic concept here is to code the
RTL to be similar to what you are expecting in hardware. If you need a mux - code a MUX if
you need an adder - code an adder, don't make it into a complex state machine with many
inputs/outputs that does everything (KISS helps the synthesizer too!).

Synthesizable RTL should always be synchronous. Think about how much logic a signal will
have to travel thru before it reaches a flip-flop. If you're adding or multiplying vectors together,
realize that the carry paths could take a long time to propagate. Don't let these long carry paths be
an input to a complex state machine without registering the signal first. Wherever possible,
register the outputs of a module. This is the most basic form of timing budgeting. Try not to pass
an input directly to an output without a register stage somewhere. This tends to make for very
long paths when modules are strung together. Silicon is relatively cheap - add DFFs where you
can to make the timing easier. Often the design will actually be smaller because the timing is
easier to achieve.

Never assume that the synthesizer will optimize your design. Synthesizers follow the simple rule
of Garbage-In generates Garbage-Out. The closer RTL is to the actual
silicon version, the more time the synthesizer will spend working on
meeting timing and not have to try to figure out what you intended. I'm not
saying you need to lay down each and every gate yourself in the RTL - that
would be a complete waste of time. Use the power of the synthesizer to
take well structured code and optimize the area and timing. Giving the
synthesizer RTL code that it has to make assumptions about the intent of
the code can result in dead logic, redundant logic, poor timing, poor area and worst of all, the
gate level simulations may not match the RTL ones. Logic Equivalency may also fail if the code
is poor.

Realize that each ELSE in an if-then-else is actually the AND of the NOT of all of the previous
ELSE statements. The gate level result can become a very deep priority encoder that is in the

SNUG Boston 2008 6 The Ten Commandments of RTL Coding

critical timing path. Use a SWITCH/CASE statement if there are more than 2 or 3 levels of

ELSE statements.

State machines should be kept to 32 states or less. There are always exceptions to this rule but
generally state machines with more than 32 states are so complex it may be better to break the
state machine up into several smaller state machines. Testing every possible branch path thru a
complex state machine will take a great deal of time. Try to simplify branch paths wherever
possible. For example, try to have all error conditions branch to a common state and then process
the error condition in the same way. Proper indenting the CASE statement so that the outputs line
up in blocks of code make it much easier to read, review and debug.

Don’t code at too low-level where you are implementing the language operators. It’s much more
efficient to use the +,- or * operators and let the synthesizer choose the implementation that
matches your timing constraints. The number of bugs per line of code has widely been accepted
to be a constant. So the fewer lines of code, the fewer bugs there should be. Using operators like
+,- and * will significantly reduce the number of lines of code and result in fewer bugs and a

shorter development time.

2.5 Cross Clock Boundaries Carefully

Have you ever heard of the word
"metastability"? Digital engineers think
the world is a binary place. Unfortunately
the world is very much analog, especially
when crossing clock boundaries. A DFF
will go metastable if the D input changes
within the setup/hold time requirements
of the DFF. This means that the Q output
of the DFF will NOT be at a valid logic
level for some amount of time. The
probability that the Q output remains at
an invalid logic level is exponential with
time. Note that the probability of the DFF
going metastable isn't exponential, it’s
that the amount time that it IS metastable
is exponential. Read that sentence again.
If you violate the setup/hold of a DFF
(which will ALWAYS happen if the
signal is asynchronous) then the DFF

IN QA QB
CLK M M
I DANGER

CLK

IN
A L)
QB /-

Figure 1 Metastability Example

When IN changes in the “danger” zones of the DFF (when the
CLK goes high), QA will be at an invalid state for an
exponential amount of time. QA could go immediately to a 0
or 1, or may follow on of the other tracks and extend all the
way to the 2™ clock edge and cause even the 2" DFF to go
metastable.

WILL go metastable. BAD THINGS WILL HAPPEN while the DFF is metastable unless you

design for it up front.

The biggest problem with metastability is that it is nearly impossible to simulate. Logic
simulators don't have a "metastable” state. To get the exact picosecond when the D changes
relative to the CLK pins in order for the DFF to go metastable may take centuries of simulation
time. Thus, you must design clock boundary crossings to be correct by construction.

SNUG Boston 2008

7 The Ten Commandments of RTL Coding

http://en.wikipedia.org/wiki/Metastability_in_electronics

The classic solution is to double flop the signal. Double flopping generally gets the probability of
a metastable signal passing thru the 2nd DFF down to the point where it basically won't happen
in our lifetime. The probability depends heavily on the clock frequency, the toggle frequency of
the asynchronous signal and the silicon technology. Thus, synchronizing a pushbutton signal
pressed by a human finger with a 10Mhz clock and decent CMOS technology will result in a
likelihood of a metastable state to be perhaps a century or more (an acceptable risk). However, a
phase locked 10GHz clock/data recovery circuit on a poor CMOS technology may go metastable
every few minutes.

Ideally the signal should come directly from a DFF in the other clock domain and go directly into
a DFF in the new one. This will ensure there are no glitches or other signal integrity problems
with the incoming signal (things are already bad enough). The Q output of the 1st DFF goes
exclusively into the D input of the 2nd DFF which is clocked on the same edge as the 1st one. It
is often tempting to clock the 1st stage on the negative edge of the clock so that the signal can
pass thru the synchronizers in 1 clock instead of 2. If the clock is relatively slow, say less than
10MHz, then it's probably OK. But if the clock is much faster, then you're eating into the
probability that the 1st DFF is still metastable when the 2nd one clocks and significantly
increasing the odds that it will be metastable. Once the asynchronous signal has been double
flopped, you can then safely use the Q output of the 2nd DFF. DO NOT USE the Q output of the
1st stage. I've often seen circuits where a rising edge detector is built using the output of the 1st
stage with the assumption that it is fully synchronous. IT IS NOT. I've seen this circuit in action
many times and pulses will just disappear and you'll spend many nights and weekends scratching
your head as to why your circuit doesn't work. Metastability can make any circuit malfunction in
ways you cannot possibly imagine - or simulate.

"I can safely cross clock boundaries because I grey coded the signals” WRONG!!! If you need to
pass the entire contents of a register, counter, state machine state, etc, you must send a valid flag
to the new clock domain to indicate that the value is now safe and can be clocked into the new
clock domain. Just grey coding will NOT result in a hazard free circuit. Yes, only 1 signal will
transition at a time in a grey coded circuit, but that does not insure that the signals can cross a
clock boundary safely. It might be possible in a hand-laid-out circuit where you can carefully
match all the delays. But in an RTL circuit with lots of automatic tools synthesizing your design,
place and routing it and the fact that more than likely you'll false-path the clock domain crossing,
then grey coding will NOT result in a working circuit.

http://www.fpga-fag.com? has an interesting article on Metastability and has links to other
interesting articles.

2.6 Use Hierarchy Wisely

I've seen RTL code with hierarchy levels that included nothing more than one DFF or even 1
NAND gate! On the flip-side, I've seen RTL code with over 5,000 lines of code and multiple
state machines all in one file. Somewhere in between is Nirvana. Think about the logical

2 http://www.fpga-fag.com/FAQ Pages/0017 Tell me about metastables.htm

SNUG Boston 2008 8 The Ten Commandments of RTL Coding

http://www.fpga-faq.com/FAQ_Pages/0017_Tell_me_about_metastables.htm
http://www.fpga-faq.com/FAQ_Pages/0017_Tell_me_about_metastables.htm

partitioning of your design and also consider the physical implementation as well. Hierarchy
often follows clock domains or power domains. Try to minimize the interconnect between
blocks. If the signal list is more than 2 pages, then perhaps the block should be folded into the
next higher layer of hierarchy. Every signal that goes up and down hierarchy levels has to be
typed into multiple files so the fewer the signals that traverse the hierarchy the less work there is
in maintaining it. Think about the signals that are passed between blocks. It is often better to
place the registers that control a block in that block and wire the bus to read/write the registers
rather than thread all of the signals from the registers to/from the block. Often this will also help
out in the physical implementation as well.

Look for places where you can design the same logic once, perhaps with a few parameters, and
reuse it multiple times. Coding and debugging the code one time instead of multiple times will
save time in the long run. Recall that bugs/line of code is a constant so if you can code a module
once, debug it once, and reuse it multiple times you will reduce the number of bugs and
accelerate your schedule.

Do not rename signals when passing down thru hierarchy. Renaming signals makes it very hard
to follow the logic. The exception to this rule is if there is a module that is generic and is likely to
be reused multiple times. In this case, the names should be generic like "addr", "datain”,
"dataout”, "write_enb" and so on.

Try to pass only bits of a bus into a module that are actually used. Often a group of control
signals are concatenated into a bus to make it easier to thread thru the hierarchy. It's often easy to
simply pass this entire bus down into a submodule that may only use 1 or 2 bits of the bus. But...
all of those extra bits will cause lint and DFT violations. It is better to break the bus up into the
pieces and only pass in what is actually going to be used. Don’t concatenate signals with different
timing into a bus as timing parameters are usually applied to the entire bus.

The RMM requires that there is only one verilog module per file and that the filename exactly
match the module name. This convention makes it much easier to find and follow a complex
designs hierarchy where files are often widely dispersed across numerous directories. Prefixing
module names with a few characters that help identify the block as belonging to a particular IP
also helps locate problems quickly.

2.7 Parameterize Where it Makes Sense

The RMM recommends never using a constant and always using a parameter instead. That's a bit
of overkill. However, there is a happy medium. Most "constants” should be parameterized.
Specifically bit widths of something that may want to change from 8 bits to 12 bits or more in the
future. Use the verilog "localparam™ instead of "parameter” for constants that are only used in the
current file.

Verification of parameters is very difficult. Theoretically all possible combinations of parameter
values would have to be verified - a 2**n problem. This is clearly impractical. The better
solution is to DOCUMENT what values of a parameter have been tested. In the comment line
that describes the parameter (you do have a comment for every parameter don't you???) simply

SNUG Boston 2008 9 The Ten Commandments of RTL Coding

list the valid values for the parameter and the values that have been tested. That way if someone
tries a new value for the parameter they'll know if they are using a known working configuration
or if they are blazing new trails and may have to do a little debugging/fixing.

Verilog-2001 added the FOR-GENERATE construct which had already proven to be one of the
most powerful constructs in VHDL. FOR-GENERATE enables the instancing of a
parameterizable number of objects. For-Generate is a very powerful and easy to use feature of the
language. Be sure your Verilog reference book includes details on using FOR-GENERATE.

2.8 Warnings are NOT OK

DC_SHELL, LEDA, LEC and other tools that will “compile™ the RTL will produce Errors,
Warnings and Informational messages. Obviously errors have to be fixed no matter what, but
warnings are often ignored. Always review warnings and where ever possible, eliminate them.
The more warnings, the more chaff that has to be threshed and the more likely a true problem
will slip thru. Always review the logs of all compilation tools. Review informational messages
every now and then but these can generally be ignored.

Lint tools should always be used on RTL,
especially Verilog. Most lint tools such as LEDA
are very easy to use and with just a few clicks can
immediately point out obvious errors or warnings
in the RTL code. VHDL is a strongly typed
language and often catches numerous “typos” at
compile time. Verilog however has much looser
rules and often a bug will slip thru and take hours
or even days to find a simple typo. Lint tools will
highlight these errors or warnings quickly. Often
engineers complain that the lint tools are too
picky and result in far too many warnings that are
not actually problems. The CAD department
should work with designers to come up with a set
of rules that quickly highlight potential problems
without spewing too much chaff.

Lint in 11 steps:
The number one reason engineers give for why
they didn’t run lint on their code is because it’s
“too hard” or “I don’t know how to run it”.

1) type “leda”

2) Click on New Project

3) Clock on OK

4) Click Next

5) Click Next

6) Click Next

7) Click Add in the Files window

8) Click on your filename(s)

9) Click OK

10) Click Next

11) Click Finish
The GUI is very intuitive and gives you a list of
errors in RED that you need to fix. Lint literally
takes a few seconds to run. There are no excuses!

2.9 Always Synthesize and Review Gate Level Implementation

Synopsys has a great tool for visualizing what
your RTL will look like at the gate level. It's
called "Design Vision". Design Vision is basically
a GUI front end to DC_SHELL. To invoke
Design Vision, just type design_vision from the
same directory as your RTL code. Then click on
FILE->READ and select the Verilog files you
want to see graphically. Then click on
SCHEMATIC->New Schematic Design View or
click on the little AND gate icon. A window will

SNUG Boston 2008 10

//sample RTL code for Design vision
reg [3:0] dataout;
always @ (posedge clk or posedge
reset) begin
if (reset) begin
dataout <= 32'b0;
end else begin
if (index%control) begin
dataout <= datain;
end
end
end

The Ten Commandments of RTL Coding

pop up with a schematic representation of your design similar to the one shown here.

Design Vision - TopLevel.1 - [Console.1] - sample

o Eile Edit ¥lew Select Highlight List Hierarchy Design Aftributes Schematic Timing Test MWindow Help =1
=H = & B sample ¥

anut_teal2]

o _Hier1 | & sample

Current design is 'sample'. 4]
deszign_wvision-zg-t> gui_zoom -window [gui_get current windeow -wview] -full
design_wvision-zg-t> gui_zoom -window [guil_get current window -wview] -full

dezign_wvision-zg-t>
| ;Ij

4
L&‘Hisﬂ] Options: x|
design_vision-xg-t= |

Feady

Figure 2 Design Vision High Level Schematic

This first view is a high-level version with the Design Ware objects shown as large blocks. This
level is great for getting an idea of what the structure of your code looks like graphically. The
more interesting view however is to synthesize and flatten the design. To do that, just click on
DESIGN->COMPILE DESIGN. You'll need at least a technology library for this and the easiest
way to have a default technology is to place a file (called .synopsys_dc.setup) in your home
directory or in the current working directory.

Once the design has been compiled, the schematic window will automatically close as it is no

longer valid. Open a new one by clicking on the AND gate icon again and this time you'll get a
good idea of the logic depth of your circuit. The schematic should look something like this:

SNUG Boston 2008 11 The Ten Commandments of RTL Coding

Design Vision - TopLevel.1 - [Schematic.1 sample] - sample

o File Edit ¥iew Select Highlight List Hierarchy Design Aftributes Schematic Timing Test Window Help o =1ES
=HS @ e & 3 = & B ! sample ¥
5
@
®\
O\
47

o Hier.1 | & sample

| Optimization Complete -]

deszign_wvision-zg-t>

< f‘
Log [History Options: x|
design_vision-xg-t= |

Click objects or drag a box to select (Hold Ctrl to add, Shift to remove) Er

Figure 3 Design Vision Low Level Schematic

Uh-oh! How in the world did we get such a giant mess of logic with just a few lines of code?
We’ll never meet timing!!! This is primary value of reviewing your RTL in Design Vision. It is
very hard to visualize how many gates and how many levels of logic just a few lines of RTL can
turn into. In the sample code here the culprit is the modulo operator % used in the IF statement.
Modulo is a division and division is very difficult in hardware. But DC_SHELL will blindly
install whatever logic you specified in the RTL. The objective of this exercise is NOT to review
each and every gate. What you’re looking for is unusually deep levels of logic, excessive
amounts of logic for what you thought was a simple function or too much logic on critical paths.

SNUG Boston 2008 12 The Ten Commandments of RTL Coding

Design Vision - TopLevel.1 - [Schematic.1 _sample] ~ sample

With just a little recoding to replace the < Fle Edt view Select Hghight List Herarchy Design Atrbutes Schemaii Tring Test
modulo Opel’ator with a Simple bit-SeleCt, we Uw;wd;ng\p lea@ - c@l@eel: - (B | DEeeE ===
get the amount of logic we were expecting for | EE

this design, 4 DFFs and a little logic in front.
You can explore the timing of the design by
clicking on TIMING and generating various
reports including a histogram of slack. You'll
want to setup some timing constraints first
via the ATTRIBUTES menu or by reading in

a constraint file.

ZORE]

Always review the final gate level netlist.
Look for SYNOPSYS_UNCONNECTED

signals or Logic* signals which indicate that T Her | o sanple

you have unused signals or tied off logic that % o s s s g v ™
could be further optimized away. Look for aesian s B E
latches and be sure there aren't any. If there T : s =1
are latches in the netlist, then you've probably e

Click objects or drag a box to select (Hold Ctrl to add, S‘ B

got some bad RTL. Lint will help find latches
or poor coding styles. Also review the
synthesis log file and review all errors and Figure 4 Final Schematic with corrected RTL
warnings. Check that the clock and reset

signals are not buffered as they'll get buffer trees added by the Place & Route tools. Review the
timing report of the maximum delay and especially look for any inputs that have an asynchronous
path directly to an output. Hopefully you've registered all of your outputs.

Use the command REPORT_REFERENCE to get a list of cells used in your design. Look for
any latches or unusual cells (like tristate drivers). This is always a good practice to insure your
RTL code is of high-quality.

2.10 If the Code Has Not Been Tested, It Does Not Work

If 1 only had a nickel each time an engineer made a change and didn't
bother to rerun a simulation because "It was a small change, | know it
works", I'd be a gazillionare now. If you haven't run a simulation that puts
the RTL code thru all combinations, it doesn't work. Always write a small
testbench that verifies that the RTL works at a basic level. This small
testbench doesn't need to test everything. But reading/writing a few
registers and passing a little data will only take a couple of hours to write
and will save days of debug at the system level. Not every block needs a module level testbench.
If a set of files makes a clean boundary for testing then the RTL could be tested as a group.

Learn how to run the simulator and collect code coverage statistics. For VCS, use the -cm_pp gui
option to load up the coverage data and quickly find the lines of code that are difficult to cover.
Add the following options to the VCS invocation line to collect coverage data.

SNUG Boston 2008 13 The Ten Commandments of RTL Coding

-cm line+path+branch+cond+fsm+tgl -cm_ignorepragmas -cm_line contassign -cm_noconst -
cm_glitch 5 -cm_name $(TEST)
3.0 Conclusions and Recommendations

Coding RTL looks a lot like writing software, but it will eventually be cast into unforgiving
expensive silicon where you cannot simply download a new rev if there are any bugs. The
Commandments presented here provide a few golden rules to live by which will reduce the
likelihood of bugs. Clean designs are more likely to be reused in future generation products. The
progression of Moore’s law means there are acres of silicon to be filled. Those acres of silicon
need good clean RTL code.

COMMENT YOUR CODE!!!

4.0 Acknowledgements

I wish to acknowledge several engineers at Cypress who reviewed and helped formulate the RTL
commandments: Timothy Houlihan, Johnie Au and Srinivasa Rao Prerepa.

| also want to thank Jonah Probell for reviewing this paper.

5.0 References
Reuse Methodology Manual (RMM) (Michael Keating & Pierre Bricaud ISBN:1-4020-7141-8)

“The Ten Commandments of Excellent Design” — Peter Chambers 1997
http://asic-world.com/code/verilog tutorial/peter chambers 10 commandments.pdf

Sunburst Design has a number of valuable SNUG tutorials on their web site at:
http://www.sunburst-design.com/papers/

Stuart Sutherland teaches Verilog and also has a number of applicable papers at:
http://www.sutherland-hdl.com/papers-by-sutherland.php

“The Ten Edits | Make Against Most IP (And Wish I Didn’t Have To)”
Wilson Snyder SNUG 2007
http://www.veripool.org/papers/TenlPEdits SNUGBo0s07_paper.pdf

Metastability articles: http://www.fpga-fag.com

SNUG Boston 2008 14 The Ten Commandments of RTL Coding

http://asic-world.com/code/verilog_tutorial/peter_chambers_10_commandments.pdf
http://www.sunburst-design.com/papers/
http://www.sutherland-hdl.com/papers-by-sutherland.php
http://www.veripool.org/papers/TenIPEdits_SNUGBos07_paper.pdf
http://www.fpga-faq.com/FAQ_Pages/0017_Tell_me_about_metastables.htm

